3.2.82 \(\int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [182]

3.2.82.1 Optimal result
3.2.82.2 Mathematica [A] (verified)
3.2.82.3 Rubi [A] (verified)
3.2.82.4 Maple [A] (verified)
3.2.82.5 Fricas [C] (verification not implemented)
3.2.82.6 Sympy [F]
3.2.82.7 Maxima [F]
3.2.82.8 Giac [F]
3.2.82.9 Mupad [F(-1)]

3.2.82.1 Optimal result

Integrand size = 31, antiderivative size = 106 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a (A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a (A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a B \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

output
2*a*B*sin(d*x+c)*sec(d*x+c)^(1/2)/d+2*a*(A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2) 
/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2) 
*sec(d*x+c)^(1/2)/d+2*a*(A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2 
*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2 
)/d
 
3.2.82.2 Mathematica [A] (verified)

Time = 1.86 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.73 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a \sqrt {\sec (c+d x)} \left ((A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+B \sin (c+d x)\right )}{d} \]

input
Integrate[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x 
]
 
output
(2*a*Sqrt[Sec[c + d*x]]*((A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 
 2] + (A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + B*Sin[c + d*x 
]))/d
 
3.2.82.3 Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 4485, 27, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4485

\(\displaystyle 2 \int \frac {a (A-B)+a (A+B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)}}dx+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {a (A-B)+a (A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a (A-B)+a (A+B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

\(\Big \downarrow \) 4274

\(\displaystyle a (A-B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+a (A+B) \int \sqrt {\sec (c+d x)}dx+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a (A-B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A+B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

\(\Big \downarrow \) 4258

\(\displaystyle a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

\(\Big \downarrow \) 3119

\(\displaystyle a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\)

input
Int[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x]
 
output
(2*a*(A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x 
]])/d + (2*a*(A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec 
[c + d*x]])/d + (2*a*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d
 

3.2.82.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4485
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[ 
e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Simp[1/(n + 1)   Int[(d*Csc 
[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x 
], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[ 
n, -1]
 
3.2.82.4 Maple [A] (verified)

Time = 16.81 (sec) , antiderivative size = 240, normalized size of antiderivative = 2.26

method result size
default \(-\frac {2 a \left (A \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+B \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(240\)
parts \(-\frac {2 \left (a A +B a \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 B a \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 a A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(458\)

input
int((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x,method=_RETURNVER 
BOSE)
 
output
-2*a*(A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli 
pticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*B*cos(1/2* 
d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*(2*sin(1/2*d 
*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/ 
2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.82.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.33 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {-i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A - B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} {\left (A - B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, B a \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{d} \]

input
integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm= 
"fricas")
 
output
(-I*sqrt(2)*(A + B)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c)) + I*sqrt(2)*(A + B)*a*weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c)) + I*sqrt(2)*(A - B)*a*weierstrassZeta(-4, 0, weierstrassPInver 
se(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - I*sqrt(2)*(A - B)*a*weierstras 
sZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 
2*B*a*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 
3.2.82.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=a \left (\int \frac {A}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)**(1/2),x)
 
output
a*(Integral(A/sqrt(sec(c + d*x)), x) + Integral(A*sqrt(sec(c + d*x)), x) + 
 Integral(B*sqrt(sec(c + d*x)), x) + Integral(B*sec(c + d*x)**(3/2), x))
 
3.2.82.7 Maxima [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm= 
"maxima")
 
output
integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)
 
3.2.82.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm= 
"giac")
 
output
integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)
 
3.2.82.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(1/2),x)
 
output
int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(1/2), x)